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Damage spreading in theg-state Potts model
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Dynamical evolution, in the phase space, of the ferromagnesi@ate Potts model on a square lattice is used
in order to study the spread of damage. Our results obtained by numerical Monte Carlo simulation, updating
the system by a Glauber dynamics, show that this approach is appropriate to calculate the critical temperature
T. (the same ady where the damage spreadss well as to indicate the order of the phase transition
(second-order fog=<g, and first-order fog>q.). The present simulation on finite systems yiejds- 7, to be
compared with the exact value qf=4 in the thermodynamical limi{.S1063-651X97)10402-(

PACS numbdrs): 05.50+q, 64.60-i, 75.40.Mg

Among several models of statistical mechanics employed The spread of the damage technique has attracted great
to study cooperative systenimany degrees of freedom mu- attention, mainly in the case of models defined in terms of
tually interacting, one of the most useful is the Potts model, Boolean variables; e.g., the Ising mod&14] and cellular
developed as a generalization of the Ising model and apprautomatd 15]. Some interesting results were notéid:there
priate to describe many real systems. In this model, the siteis a dynamical critical phenomenon at the frontier between
of a lattice are occupied by identical variables, each one the(chaotig region, where the damage spreads, andfilwe
having g possible states. The Hamiltonian for toestate  zen region, where the damage hea(s) surprisingly, this
Potts model is given bj1,2] phenomenon is also very sensitive to aspects such as the

initial damage, and the dynamical rule used for the system to
evolve;(iii) in the case of thermal models there is, in general,
H=->, Jij8(ai,09), (1)  good agreement between the critical temperature for damage
(.0 spreading,T4, and the Curie critical temperaturég .

For theg-state Potts model considered here, we monitor
where (i,j) denotes the sum over all pairs of nearest-the time evolution of two configurationd={c"\(t)} and
neighbor sites of the lattice];; is the coupling constant, B={cP(t)}, on a square lattice witlN sites, and the total
&(oj,0;) is  the  Kronecker  function, and average damage at timeis calculated as the fraction of

0i=0,1,2...,(9-1). corresponding sites that are in different states, that is,
On the square lattice, the uniform ferromagnetic model
(Jij=J>0) presents a phase transition at the critical tem- 1 N
perature kgT.(q)/J=1/In(1+/q) [3], where kg is the D(t)=—> [1—8(al(t),0B(1))]. @)
Boltzmann constant. Most interesting, the order of the phase N=
transition changes from second order €pe4 to first order
for q=5 [4]; the same phenomenon occurs in the threeStarting with configurationA thermalized at a given tem-
dimensional case at the neighborhoodyet3. peratureT, configurationB is created with a certain fraction
As few exact results are known, in one and two dimen-D(0)=M/N of damaged sites, as compared with those cor-
sions, several methods have been applied in the study of thiesponding sites oA. For each temperatur€é and initial
model as, for example, the renormalization group, series exdamageD (0), wethen let both configurations evolve in time
pansion, and numerical simulatidf]. In the latter approach according to the same dynamics, i.e., the same rule and the
[5,6], time evolution of some configurations of the model, in same random number sequence in the Monte Carlo proce-
phase space, is monitored and both equilibrium and nonequiture. After a relaxation time needed for the damaged copy to
librium physical quantities can be calculated. also be thermalized, we monitor the damage for a long time
In the last years, a method of numerical simulation thatn order to calculate its time average value given by the
has been proved useful is the so-called damage spreadittamming distanc€2). This procedure is repeated for many
approach. It consists of following the simultaneous time evodifferent sampleginitial configurationsA andB).
lution of two microscopic configurations of the model and of At a given time, the variable;(t) =s at sitei, is updated
measuring the total damage between them. according to the following rule: First, the new state
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FIG. 1. Average damagB(t) as function of
the temperatur@ for D(0)=1/N and 50< 50 lat-
tices, obtained from simulations on thpstate
Potts model employing a Glauber dynamisse
text). The damage equals|{- 1)/q in the chaotic
region.
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o (t+1)=s’, with (s’ #5), is chosen with equal probability. whereB=1/kgT andAH is the change in energy associated
This is performed on the computer by dividing the intervalwith such a move. On the computer, this is implemented by
[0,1] into (q—1) equal pieces, and calling a random numbercalling a second random numbg((t) uniformly distributed
x;(t) uniformly distributed between 0 and 1. In the presentin the interval[ 0,1], and setting

implementation the new state is set equataf x;(t) falls ]

in the interval s’ if yi(t)=pi(t)

qit+D=15  otherwise. ®
:sxi(t)<L, (3)  The same pair of random numbecgt) andy;(t) is used for
q-1 q-1 updatingo?\(t) andoP(t) at sitei in both configurations. In
the high-temperature limit, where the probabilities given in
wherer=1,2,...,0—1) ands’=(s+r)mody. Eg. (4) go to 0.5 independent of the neighbor configurations,
Second, the statg’ is then accepted with probability the application of the above dynamical rule to damage

spreading simulations yields a vanishing Hamming distance:
This corresponds to a generalization of the Glauber dynam-

(4) ics high-temperature resui] for an Ising g=2) ferromag-
net. It is also important to note that, once the configurations
A andB become identical they will always stay identical.
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FIG. 2. Average damag®(t) vs the reduced temperature
T/T,(q) for gq=3 and for initial damagesD(0)=1/N and FIG. 3. Theq dependence of the temperatdreé (open circley
D(0)=1. We have observed the same behavior for all values ofibove which the damage becomes independent of the inital condi-
g=3; while for =2 an initial symmetric damage is preserved. tion, and the dynamic transition temperatdig(closed circles



1450 de A. BIBIANO, MOREIRA, AND MARIZ 55

Figure 1 shows the temperature dependence of the longes preserves the initial symmetric damafg0)=1, for all
time damage, obtained from simulations on square lattices dfmes and temperatures.
size 50< 50 with periodic boundary conditions, and for ini-  The temperaturd* above which the average damage be-
tial damageD (0)=1/N. The damage was allowed to relax comes independent of its initial condition, allows us to define
over a time of 1000 Monte Carlo steps per spin, its spreadingn intervalAT=T* — T4 whoseq dependence shows a de-
was monitored during 2000 time units. For each temperaturereasing behavior with increasing valuesmpfsee Fig. 3.
the averages were performed over 64 samples. For all valuésr g=8 we obtainAT=0.001T.(q), which is the limit of
of g, the above dynamics yields a frozen phaseTetT precision of our simulation, characterizing a discontinuous
and a chaotic phase far=T,. behavior of the temperature dependence of the average dam-

The chaotic phase has a damage rapidily increasing to itgge. The value off* =8 is here identified withy.+ 1, where
high-temperature valuB(T—«)=(q—1)/q. At this limit, the system undergoes a first-order phase transition. The esti-
all g2 configurations of two corresponding sites occur withmate value ofj.=7 that follows from simulations on lattices
equal probability, but onlyg(g—1) corresponds to damaged of size 50<50, compared with the exact result gi=4,
configurations. suggests a weak convergence to the thermodynamical limit.

We have noted for all values af that T4(q)=T.(q) (in Indeeed, the latent heat increases very slowly wgthfor
the limit of precision of our calculationsshowing that this g>4 [4]. Further work, addressed to a finite-size analysis of
approach can be used to obtain the critical temperaturthe L dependence oA T, would be of interest in order to
T.(q) in other lattices where the exact value is not availableimprove the estimation of the critical value.

In Fig. 2 we show forg=3 the behavior of the average =~ To summarize, our damage spread study on the ferromag-
damage for bottD(0)=1/N andD(0)=1, as a function of neticqg-state Potts model on square lattices, showed that it is
the reduced temperatu@T.(q). In the latter case, the fro- possible to calculate the critical temperatures of the model as
zen region disappears, but for a characteristic temperatumgell as to give some indication of the order of the phase
T*=T, the damage assumes its high-temperature valutransition.

(g—1)/q, joining with the curve forD(0)=1/N. The same
behavior is observed for all values q&=3. We recall that This work was supported in part by CAPES, CNPq, and
for g=2, i.e., for the Ising ferromagnet, the Glauber dynam-FINEP.
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